CHAPTER 5 SERIES SOLUTIONS
1 Power Series Method

1.1 Power Series

o0
D am(x—x0)™ = ao+ar (x-x0)+*az(x—x0)+...

m=0

where, ao, a1, . . ., are constants (coefficients); xo is a constant (center)
Taylor's Formula

(m)
fx) = Z fm!XO (x—x0)™ + Rn (X — X0)

If (x — xo) is sufficiently small, Rx (x — x0) & 0 as N — oo, then, we say f(x) is analytic at xo, and

o ™ (x0)
f(x) = Z m;(o (x=x0)"
m=0

Taylor Series
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Examples:

When xo =0 = Maclaurin Series

o0 m 2 3
I e
e = ol 1+x+2' + 31 + .
m=0

© (_1)1’11 X2m+1 3 5 7

sinx = Z _y X X X
(Zm+1)! 31 51 7l

m=0

COS X =

——+
2! 41 6!

Z (_1) 1 2 xS
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1.2

Basic Idea of the Power Series Method

In the previous discussion, the linear differential equations with constant coefficients were solved and shown to have solution for

They can be anyone of the following 3 forms:

y=Ae™ +Ae™
y=(A+Ax)e"
y =e”* (A cos Bx+ A, sin Bx)

y"+ay'+by=0

But, exponential, sine and cosine functions can be expressed in terms of Maclaurin series or Taylor series expanded around

Z€ro.
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[Example] y"+y = 0

[Solution] Assume

o0
2
y o= D amx™ = agtarxtax’+...
m=0
o0 o0
-1 2 -2 2
y' = Z mamX' & = ar+2ax+3azx + ... y' = Z m(m-1)amx"~ = 2a+6asx+12asx"+ ...
m=1 m=2
Since y'+ty =0
= Qaz+6asx+...)+(@+arx+ax +..) = 0 or (a2 + ao) + (6as + a1) x + (12as + a2) X" + . ..

. 2 o o .
Since 1, x, X, . .., x" are linearly independent functions, we have

2ap+ap = 0 coefficients of x°
baz+ar = 0 coefficients of x*
12as+a = 0 coefficients of x>

(1) a2, as, ag, . . ., can be expressed in terms of ap and (2) as, as, a7, . . ., can be expressed in terms of a1

where ap and a1 are arbitrary constants. After solving the above simultaneous equations, we have

ao ag al al ag
az = - 2 = - 2' ; a3 = - 6 = - 3' ; a4 = P = 4' ; coe
X2 X4 X3
thus y = a|l-"7%7+77 — . tai| x =73 + .. | Tagcosx +aisinx
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Since every linear differential equation with constant coefficients always possesses a valid series solution, it is natural to expect the
linear differential equations with variable coefficients to have series solutions too.

Also, since the majority of series cannot be summed and written in a function form, it is to be expected that some solutions must be
left in series form.

y'+tpx)y' tqx)y = 0

where p(x) and q(x) are expressed in polynomials.

We assume

y = Z am X" = aptarx+tarx +...
m=0
o0

y' = Z mamX = art2ax+...
m=1

y" = Z m(m_l)amxm_z = 2a+3x2a3x +...

(1) Puty, y' and y" into the differential equation

(2) Collect terms of x°, x', X% .. .,

(3) Solve a set of simultaneous equations of a, a1, a2, ....
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2 Theory of Power Series Method

Introduction
Power Series:
S(x) = i am (x—x0)™ = ap+a1 (x—xo)+az(x—x0) +...
m=0
Partial Sum:
Sa(x) = ao+ar(x—xo)+ax(x—x0)+...+an(x=x0)"
Remainder:
Ro(X) = ans1 (x—=x0)"" +an2 (x—x0)" 2 +. ..
Notethat Rn = S-Sn or |[Sn-S| = |Ra|
Convergence:
Definition 1: If r}grolo Sn(x1) = S(x1), then the series (1) convergesatx = x1 and X, # X,

Definition 2: If the series converges, then for every given positive number ¢ (no matter how small, but not zero), we can find a

number N such that| Sn =S | <¢ for every n> N
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2.2

Radius of Convergence

Example 1:
Z X" = THx+xX+. =
m=0

Example 2:
0 m 2

X —

Z = lHx+T57 +
m=0

If a series converges for all x in
| x=x0 | <R
and diverges for
| x—x0 | >R
then R = radius of convergence

R = oo if series converges for all x.

|x| >1 divergent;

=e) =

(0<R <)

convergent

convergent for all x.
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R can be calculated by the following formula:

1
R = (Ratio Test)
. dm+1
lim
m-—o| dm
Ratio Test
, amn (x—x0)™" _ am+1 (X —x0) _la_.,
p = lim o=k =X = X, lim |-
m—»o0 am ( X —Xo ) m-—>o0 dm moel an
if p > 1 divergent
p <1 convergent
p =1 test fails (i.e., inconclusive)
: : an.g . M
Since p < 1:convergence, we need |x— X0| lim |/ = lim 1
m—oo am m-—>oo dm
| x-x0 | < =R
. dm+1
lim
m-—>c0| dm

(radius of convergence)
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2 © m

X X

[Example] e* = 1T+x+—5~ +... = Z "
m=0
_ o famax) P X/(mADty o x
P nlllgloo dm _nllgnoo 1/m! _nlllgloom-"l -0<1
= The series converges, i.e.,
. 1/m! . .
R =lim———= Ilm(m+l): w, i.e., converges for all x.

moe1/(M+1)l mo

[Example] D x™ = T+x+x"+x +...

m=0
X am+1
p = lim e = lim | x| = |x|
m-—>0 m m—>0
thus, converges for | x | <1
diverges for | x| >1
test fails for | x| =1
Radius of convergence
1 . .
| x| <R = lim==1,i.e, converges forall xin | x | <1.
m—oo

In fact, this series converges to 1—x for-1<x<1.
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[Example] Z mix™ = T+x+27+6x +...

m=0
X am+ Xx(m+1)!
p=lim—1 =J—,L=x(m+1)=oo>1
m—soo| a@m m !
R=Iim| % |:Iim L =0 Thus, this series diverges for all x # 0.

m—>oo|am+l| moe m+1

[Example] >’ J;—lmL X
m=0

m

. o 3. . [ t]
This is a series in powers of t = x” with coefficients am =

8

t dm+1
dm

, sothat p = lim
m-—»oo

m

thus, converges for

am

t .
[t <1 or |t| <8 or R=Ilim

8 m—oo

=8, ie, | x| <2

m+1
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2.3 Properties of Power Series

O]

A power series may be differentiated term by term (Term-wise Differentiation).

Zam (x—=xo0) m’ |x=x0] <RandR>0 = y Zmam (x—x0) -1=imam(x_xo)m71
m=0

Two power series may be added term by term (Term-wise Addition).

o0

= D am(x-x0)" and  g(x) = D bm(x-x0)" = fX)*+gx) = X (am+bm)(x-x0)"

m=0 m=0 m=0

Two power series may be multiplied term by term (Term-wise Multiplication).

0

=  fx)gKx) = D, (abm+aibmi+...+ambo)(x—x0)"

m=0

Vanishing of all Coefficients (Linearly Independence).

Z am(x—x0) = 0 forallxin |[x—xo| <R = am = 0 forall m.
m=0
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Let's ask ourselves a question: Can all linear second-order variable coefficient differential equations be solved by power series
method? Let us answer this question by the following illustration:

[Example] Solve the following Euler equations

2 "

x“y"+axy'+by =0

where (i) a=-2 b=2
@ a=-1 b=1
i) a =1, b=1

[Solution] we assume

2 "

x"y'+taxy' +by=
Z [mM(m-1)+am+blcax™ = 0
m=0

Note that m (m —1) + am + b = 0 is the characteristic equation for Euler equation.
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Case (1)

Case (ii)

=

=

We need another linearly independent solution to get the general solution of the differential equation.

=

=

Z (m*-3m+2) cmx™ = 0

m=0

(m*-3m+2)ecm = 0 or (m-2)(m-1)cm = 0

cm = Oforallm=Tlor2 (c,=c,=c¢,=---=0)
y = axto X Same if solved with characteristic equation!!!
a = -1, b =1
(m*-2m+1) cmx™ = 0
m=0

(m—-1)cm = 0
cm = 0 forallm=1

y = cx ..Inthis case, power series method yields only one solution: y = c1 x.

Reduction of order: letys = xu = Xu'+x*u = 0

u = cln|x| = y = Ax+BxIn|x| (Same as before!!!)
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Case (iii) a = 1, b =1

= cm = 0 for all m

i.e., the power series method fails completely, but why??

By the way, the general solution of Case (iii ) is

y = Acos(In|x|)+ Bsin(In|x|)
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24 Regular Point and Singular Point

Analytic Function: If g is a function defined on an interval I, containing a point xo, we say that g is analytic at xo if g can be
expanded in a power series about xo which has a positive radius of convergence.

A function f is real analytic on an open set D in the real line if for any xo in D
one can write

>0

f(z)= an(x —=o)"

n=>0

= g + a1(x — xo) + as(x — 0)* + az(x — x0)* + - - -

in which the coefficients ay, as, ... are real numbers and the series is convergent to f(x
for x in a neighborhood of x.

Alternatively, an analytic function is an infinitely differentiable function such
that the Taylor series at any point xo in its domain

) (0
T(@) = > 2 — ooy

T

converges to f(x) for x in a neighborhood of x, (in the mean-square sense). The set of
all real analytic functions on a given set D is often denoted by C“(D).
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® Any polynomial in x is analytic for all x.

® Any rational function (ratio of polynomials) is analytic for all values of x which are not zeros of the denominator
polynomial.

Question: Aree®, A\[x ,and = analyticatx = 0?
: , , ~ y :

Theorem (Existence of Power Series Solutions)

If the function p, q, v in
y'rp@y Ha@y = )

are analytic at X = X,, then every solution y(x) of the above equation is analytic at X = X, and can be represented by a power series of x -

0

xo with radius of convergence R >0, ie. y = Z am (x —x0)"

m=0

Definition: Reqular Point and Singular Point

Wecall x = 0aregular point (or ordinary point) of the differential equation

y' HpR)y' +ak)y = 0
when both p(x) and q(x) are analytic at x = 0.

If x = 0 is not a regular point, it is called a singular point of the differential equation.
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= x = 0is asingular point!

may give some trouble in power series method.

Although it is inappropriate, we nonetheless assume y = Z cm X

The differential equation becomes

o]

m=2 m=1

Let m=k+1 = Z

Let m=k+1 = Z:2mcmxm'1

Let m=k-1 = Z:cmxm+1

Cn1X

[oe] [oe]
1 +1
Zm ) Cm X" +Z:2mcmxm +Z cmX 0 =0
m=0

ml Z k+1) kck+1xk
k=

> 2(k+1)anx = 2c+ ) 2(k+1)cx

k=0 k=1
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Thus we have

201+ ), {[(k+1)k+2(k+1)]awi+ca} x* =0 or 2c + ), {(k+1)(k+2)ci+cer}x* =0

k=1 k=1
ca =0
— Ck-1
Ck+1 = (k+2)(k+1) fOI'kZl
G = C = ¢ = =0
Co Co
c = ? G = ﬁ

Only one solution is obtained! The other linearly independent solution can be obtained by the method of reduction of

order:

sin X 1 [oeo sin x 2 COS X .
= 2 = u u'=—e wherey, =——andp=—| = 2 = Exercise!
: sin X Cos X
y = X X
2 4

1 X X
Note that = X {1_T+T+“'}'
This suggests that we may try y = X" (co+ ¢1 + c2 x> +...) in the first place to obtain the second linearly independent
solution.
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3 Frobenius Method

3.1 General Concepts

y'tpx)y' +tqx)y = 0

o9}

If p(x), q(x) are analytic at x =0 = x =0 is a regular point, two linearly independent exist. = y = Z am X"

m=0

If p(x), q(x) are not analytic at x =0 = singular point]

For x = 0 is a singular point, rewrite the differential equation in the following form:

b(x c(x
y'+p()y' +ax)y =y"+JXl y'+szly =0

If b(x), c(x) analytic at x =0 = regular singular point}, at least one solution exist with the following form

e8]
y=x Z am X" where r is a parameter which need to be determined. It can be positive or negative.

m=0

If b(x), ¢(x) not analytic at x=0 = |irregu1ar singular pointl, a non-trivial solution may or may not exist.
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Theorem 1 (Frobenius Method)
Any differential equation of the form

b(x)
x Y

y||+ |+@y=0

where b(x) and c(x) are analytic at x = 0 (a regular singular point) , has at least one solution of the form

a0
2
y = xrz amx” = X (ap+ax+ax + ...),

m=0

where aop #0 and r may be any number ( real or complex ).

x=0 regular singular point!!!
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3.2 Indicial Equation

b
o+ ix) y' + C();) y = 0  or Xy Exbx)y' ey = 0

Since b(x) and c¢(x) are analytic, i.e.,
b(x) = bo+bix+bax>+...

2
cotaxtox +...

(@)
—~
X
~

I

y =X, amx"= X' (@ +aXx+a,X" +:-)

m=0

o0

o0
y' = Z (m+71)amx™" = x"" Z (m+71)amx™

m=0 m=0
=x"[rap+(r+1)aix+...]
y' = Z (m+r)(m+r—1)amx™"? =x" Z (m+r)(m+r-1)amx"
m=0 m=0
= X?[r(r-=1)ao+(r+1)raix+ ...]
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Puty, y', y", b(x), c(x) into the differential equation and collect terms of x*, we have (for x" terms)

[r(r—1)+Dbor+co]Jao = 0O
Since ap # 0, we have
r(r-1)+bor+co = 0

Two roots for r:

0
one root for y1=x" Z am X"
m=0
another root = Theorem 2 for y»

Indicial Equation !!!
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Theorem 2 (Form of the Second Solution)

Case 1: 11 and 12 differ but not by an integer

r
yr = x (a0 +arx+axxX’+...)

y2 = xrz(Ao+A1x+A2x2+...)
1

Case2: ri=m=r1, 1= "5 (1-bo)

yi = X' (ao+tarx+ax +...)

y2 = yilnx+ x (Aix+Aax*+...)

Case 3: r1 and r2 differ by a nonzero integer, where r1 > r2
I 2
y1 = x (actarx+ax +...)

y2 = kyilnx+ xrz(Ao+A1x+A2x2+...)

where r1 —12 >0 and k may or may not be zero!!!

Note that in Case 2 and Case 3, the second linearly independent solution y2 can also be obtained by reduction of order
method (i.e., by assuming y2 =u y1).
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Case 1: r1 and r, differ but not by an integer

1 1
[Example] y"+——— y'+ el VT 0, x>0 (Euler Equation)

o0 o0
[Solution] y = x"(ag+aix+ax +...) = x' Z amXx" = Z amx™"
m=0 m=0

y| = Z (m+r) amxm+r-1

m=0

y' = Z (m+r) (m+r-1) am X"

m=0

= iam[(r+m)(r+m—1)+%(r+m)+%} X2 =

m=0

Form= 0, am#0 (a,=0 by Theorem 1), we have the indicial equation:

1 1
r(r-1)+ 7~ r+ 5 =0 = rn =1/4 and r1r2=1/2
Note that in this case, r1 # r2 and r1 — 2 is not an integer.

1
rz—l’l :Z
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2
Forr=—,~, wehave y1 = x/*(ap+arx+ax +...)

i 1 1 1(1 17 Lim- L
ol [Grem [GemetJofemleg [ w0 o B w0
m=0

which is valid for all x > 0.

1
Thus, we have amm[m—z} =0 forallm(=0,1,2,...)
= for m = 0 ao = arbitrary nonzero constant
but for m =1, 2, ... am = 0
= y1 = ao x4
Similarly, forr = 1/2, we have

( by setting y2 = x"?(Ao+ Al x+Asx*+ Asx’ +..., Exercise!)

=  y2 = Aox"”?

Hence, the general solution is

y = a0 A4 Ag X172
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[Example] y' y'+7y = 0, x>0
[Solution] Letting y=x"D, amx™, wehave Y am[(r+m)(r+m-1)+(r+m)+1]x"™> = 0
m=0 m=0

The indicial equationis (m=0,a, #0) r(r-1)+r+1 = r*+1 = 0

r = i rn = —i, r1 —12 =2i is not an integer.

Forr = 1

D am[(i+m)(i+m-1)+(i+m)+1] x¥"™ = 0

m=0
or am[(i+m)’+1] = 0 or amm(m+2i) = 0
= m=0 ao # 0, i.e., ao is an arbitrary nonzero constant

m=#=0 am =0
= y1 = ao X' =a,e'™= ap[cos(Inx) +isin(Inx) ] = cos(Inx) + i sin(Inx) By takingap = 1
Forr = —1i, we have (Exercise!) y2 = x" = cos(Inx) — i sin(Inx)

Since the linear combinations of solutions are also solutions of the linear differential equation, thus,

1 1
yi* = 5 (y1+y2) =cos(lnx) and y2* = 57 (y1—y2) = sin(lnx) = y = c1cos(Inx) + cz2 sin(lnx)
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Case2, r1 = r» = r, Double Roots

1
[Example] y" +y' Te Y T 0, x>0
X

o0

[Solution] Letting y = x" Y, amx™, we have

m=0

00

0 . ) w " )
Z am(r+m)(r+m-1)x m-z+z am(r+m)x""+ Z 7 amX' m2 = 0

m=0 m=0 m=0
r+m-l=r+k-2 = m=k-1
0] e8] e8]
Since Z am (r+m)x™" = z aa (r+k-1)x"?%= z ama (r+m-1)x""?
m=0 k=1 m=1

The differential equation becomes

1 r-2 S 1 r+m-2
a| r(r=1)+7, [ x"+ Z am (r+m)(r+m-1)+7 |+amq(r+m-1)x =0
m=1
The indicial equation is
1 1T 1
r(r-1)+7 =0 or r-5| =0 = =1 =r= 5
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N|»—\
Y[

Jows =

Il
(@)

> ol (Femy byt [ramim-t) | T =0 o é{mzam{m_

2
= am = - 2 for m > 1 (recurrence formula)
m
_ a0 _ (3/2)a, 3 a, 3 ao
Hence a = 5, a = - o7 ——2_22 Y T 9252

1 = (2n)( XY
and y1 = a0 x° {1— ; + 23;[3}2#“}: Xl/zz(;gnl)z(_Zj , x>0

Note that we have set ap = 1 in the above equation.

Approach 1

Sincer = r1 = ry, another solution can be obtained by directly letting

y2 = yilnx +x" (A1x+ Az X+ . ) (Exercise!)

1
7| X
= y2 = y1lnx + x {—¥+}
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Approach 2
We can also use the method of reduction of order to produce the second linearly independent solution, y», by letting
y2 = uyi

Put into the differential equation,

u yi' - 1 x
u'yr +u' (2yi'+y1) = 0 = u =—2y1 -1 = ...(longdivision) = -—- -7~ +...
2 1 5
i Inu' = —lnx——X + or u = _ ex o =
ie, Inu 3 ~ €Xp g t.-.

By expanding the exponential function in Taylor series and then integrating

.

2
X X
Both are tedious and intractable!

[Exercise] xy"+(1-x)y'-y = 0, x>0
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Case 3: r1 and r» differ by an nonzero integer, r1 > 2

1
[Example] x*y"+xy'+ [ x* - T} y = 0  (Bessel's equation of order 1/2)

Solution] Put = XY amx™ = A X ™
[ y
m=0 m=0

The differential equation becomes

o]

1

m=0 m=0 m=0 m=0

After substituting Z am2 X" for the last term of the Ihs of the above equation, we have

m=2

w1 (1) e [ ] e (D) = | Y fan] (rem) (remo1)  (rem) T [rans | 5

m=2
Thus, we have the indicial equation:
R B I U
r(r-1)+r-=,4 —r—Z:O or =" n =-7

Note thatr1 —r2 = 1 is an integer!!!

Note also that, when m=1, r,(r, +1)+(r, +1)—% = (—ij(ij+£—l =0!

o0 0 0
am(r+m)(r+m-1)x""2 + Z am (r+m)x""2 - Z Za\rnerrIH'2 + Z am X

0
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3

1 - 5
Forr =5~ = 2a1x'1/2+2 [am(m2+m)+am-z] x 2 =0
m=2
-0 q 3 am-2 ‘ 59 _ sinx
ai = an am—_m(m+1) or m =2 = y1 = \/)_(
1 .
For r» = - —~, both a0 and al are arbitrary!

5

Z [am(mz—m)+am—2] Xrn_2 =0
m=2

_ am-2
m T T m(m-1)
or ap = —ao/2! as = ao/4! as = —ao/6!
as = —a1/3! as = ai/d!
1 . . . . . COsX
= y2 = W (aocosx +arsinx) .".The linearly independent solution is T

(Alternatively, the linearly independent solution y2 can also be obtained by reduction of order method.)

= Note that k=0 in this case!

Series - 31



[Example] x*y" + xy' + (xX*~1)y = 0 (Bessel's equation of order 1)

o]

[Solution] Letting y = x" ). amx™, we have

m=0

a[r(r=1)+r —1]x2 + affr(r+1)+(r+1)-1x"+ D (am((r+m)(r+m-1)+(r+m)-1)-am2)x"™= 0
m=2

The indicial equationis r(r-1)+r-1 = =1 = 0 .. r=1 r=-1
n-r=2
L (r,+1)+(r,+1)-1=-1=0
k=0
For = 1, wehave 3o+ 3 (an (i +2m) +ane) 0 = 0
m=2
adm-2
ai = 0 and am = - m (m+2) for m>2

= yi(x) = x{l—ﬁ%}z+ﬁ[§}4—...}
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0

For r = -1, wehave —ai1x” + Z {am(mz—Zm)+am_2}xm'3 -0

m=2
= at = 0 and m(m-2)am = -am2 form=>2

But form = 2, we have 0 = ap which is not true. Thus we can not obtain the second linearly independent solution by

setting y = x Z amx" withr = -1
m=0
Approach 1

From the theorem, we need to directly assume that the second solution is of the form:
1] 2 1 1 1 .
y2 = kyilnx +x 7 (Ao+ Aix+Aox” +...)= " yilnx — 5 x7 + 77 + ... (Exercise!)

Approach 2

Note that the second linearly independent solution can also be obtained by the method of reduction of order (Exercise!):

u" -2y 1 -3 X
y2 = uy1 = 5 = i x ==t t...
2
X
Jodnu' = -3Inx + T 4L
2
1 1 1
= u = x'3exp{z—+...} = x'3+zx'1+... or u = —7x'2+zlnx+...

[Exercise] xy"+(x-1)y' -2y =0
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Legendre's Equation

Legendre's Differential Equation

(1—x2)y” - 2xy'+n(n+l)y =0

where n is any non-negative real number. Since n(n+1) is unchanged when n is replaced by -(n+1), then
(1) solution of n = n" (where n’>0) is the same as n = - (n"+1);

(2) solution of n =-n" (where n">1) is the same as n =n"-1.

| 2 x ' n(n+1)

The above equation can be written as y'-T 2V + 12 y =0
- X - X

1
12 =1+ x°
- X

But +xt 4L which is analytic at x = 0 (regular point!).

Therefore, we can solve the above equation by assuming

o0
y = Z am X"
m=0
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= Recurrence formula

(n—-m)(n+m+1)

am+2 = — (m+2)(m+1) am, m = 0,1,... (Exercise!)
or ao ai
n(n+1) (n-1)(n+2)
a = - 21 ao az = - 31 ail

0 = (n-2)n(n+1)(n+3)
4 41 a0

(n-3)(n-1)(n+2)(n+4)

as = 51 ail
The general solutionisy = aoy1+ai1y2
where
yi(X) =1— n(n+1) 2 4 n(n—2)(n+1)(n+3) 4 n(n-2)(n-4)(n+1)(n+3)(n+5) e
' 2! 41 6!
v,(X) = x— (n-1(n+2) 3t (n=(n-3)(n+2)(n+4) & (n=1)(n-3)(n=5)(n+2)(n+4)(n+6) e

3! o! 7!

Series - 35



Ifn =0,1,2,...(non-negative integer), then one of the above two solutions is a polynomial!

n(n+1) 2+ n(n—-2)(n+1)(n+3) o — n(n-2)(n-4)(n+1)(n+3)(n+5) e

yl(x)=1_ 21 a1 61
v, () = X — (n—1)3(!n+2) ot (n—l)(n—B)é!n+2)(n+4) & (n—1)(n—3)(n—5)7(!n+2)(n+4)(n+6) e
n=0 n=2,4,6,-
n 2.4.6---n
y(1)=1 y,(1)=(-1) 135(n-1)
n=1 n=135,--

192.4.6---(n=1
BU=1 y,0)=(-1)2 220D

Thus, let
y = c1Pn(x) + c2 Qn(x)

where Pn(x) = Legendre polynomials [It is desirable that Py(1) = 1]

Qn(x) = Legendre functions of the second kind converges in -1<x<1, but Qn(+1) = unbounded (This is due to the fact
that the Legendre equation is not analytic at x=+1 and x=-1!)
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4.2

Legendre Polynomials Px(x)

(n—=m)(n+m+1)

Since A, =— a, form = 0,1,...
(m+2)(m+1)
If n = non-negative integer,
am+2 = 0 form = n =a,,,=0
ie., an+2 = an+4 = an+6 = ... =0
when n = even, y1 = polynomial of degree n
n = odd, y2 = polynomial of degree n

Series - 37



These polynomials, each divided by an appropriate constant, are called the Legendre polynomials Px(x), which have the value Py(1) =1
In other words, let

yl(()l()) when n is even
P.(x) =1

AW when n is odd

Y, (D)

Or, we can choose the coefficient of x" in the Legendre polynomials Pn(x) as

an = 1 if n =0
(2n)! .3.5...(9n—

an = nn 22135 (2n l); if n=1,2,...
2°(n!) n!

Then, we can obtain the other coefficients in Pn(x) with the recurrence formula

o n(=D  _ ~(2n-2)]
"2 T T en-) " 2'(n-1)!(n-2)!
anom = (1" (2n—-2m)!

2’m!(n-m)!(n-2m)!

Then, the Legendre polynomial of degree n, Pn(x) is given by

when n is even

NS

M
Pn(X) — Z (_1)m (2n—2m)' n-2m

i ' > X where M =
s m!(n-m)!(n-2m)!

[HEN

=1 \whenn is odd

I\) ‘

Series - 38



[Example]

P(X)=1 P(x)=X, Pz(x):%(s’xz—l), Fg(x):%(5x3—3x), P4(x):%(35x4—30x2+3), Ps(x):%(63x5—70x3+15x)

Inall cases, Po(1) = 1, and Pn(-1) = (-1)"

Fig. 101. Legendre polynomials

Series - 39



4.3 Legendre Functions of the Second Kind, Qx(x)

(1—x2)y"—2xy'+n(n+1)y

=0 n=201.2... = y = caPux)+c2QuX)

The power series Qn(x) can be obtained by the method of reduction of order:

Let Q,(x) =u(x)P,(x) ={

-Y,(@)y,(x) whenn is odd andy,(x) is a polynomial
y,(@)y,(x) whenn isevenandy,(x) is a polynomial

Q, (%) = U'(x)R, (x) + u(x)R/(x)
Q1 (x) = u"(X)PR, (x) +2u"(x)R,(x) + u(x)R(x)

(1 x*)Qy (%) = 2xQ; (x) + n(n +1)Q, (x)
= (1= x*)[u"(X)P, (x) + 2u"(X)P, (x) + u(x)P,'(x)]
- 2x[u' ()P, () +u(X) P, )]+ n(n+1)u(x)P, (x)
=(1-x*)[u"(X)P, (x) + 2u"(X) P, (x)] - 2xu’(X) P, (x)
= (1= X*)U" ()P, () +u'()[ 20— X*)P/(x) - 2xP, (x) | = 0

u'(x) __|,Rx), —2x

V) TR0 14

Inu’==[2InP, () + In(L - x*) ] +* :’”':[Pn<x>]é\21—x2>
_ +B

ux) = A“-[(l x)[P(X)] ”

Q. (X)=u(x)R ()= AR ()]

dx
(= xR, (0T

+B,P, (x)
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If n=0, then

I:)o (X) =1
dx
Q) =AJ—+B,
Also,
Q(0) =Yy, (D)y,(0)=0
Q(') (0) =Y (l) y2, (0) =1
Thus
1 1+ x X3 X5
Qi) = | g = xt3T r e
Ifn=1, then
R(X)=x
dx
Ql(x) = Aix“-m-l- le
Also,
Q1 (0) ==Y, (1) Y1 (0) =-1
Q/(0)=-y,(1)y, (0)=0
Thus,

3 5
1 1+ X X X
Ql(x):EXInm_lszO(X)_l = X{X"' 3 + 5 +. .. } -1

Note the most important property of Qn(x) is that Qn(+1) = unbounded!!
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44 Some Important Properties of Pn(x)
(1) Values of Pa(x)

Pn(1) =1

Po(-1) = (-1)"

Pn(=x) = (-1)" Pa(x)

n : even, Pn(x):even functiont
n : odd, Pn(x) : odd function

Pi() = (1) Pn(x)
(2) Rodrigues' Formula

1 d°
Pa(9) = n—om [(¢=1)"]

1
[Exercise] Show that Po(x) = —5~ (3 x*-1)

(3) Generating Function for Legendre Polynomials

1 o0
= Pn(x) t"
\1-2xt + £ g

(4) Recurrence Formulas

(i) (n+1)Pura(x) = (2n+1)xPua(x) —nPna(x), n =1,2,...
(i) Pna'(xX) =Pni'(x) = (2n+1)Pn(x)

[Exercise] starting with Po =1, P1 = x, calculate P>, P3, Py, . . .
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)

(6)

Integrating Formulas

Solution to

d2
_6% + co’ce—deX

is y = c1Pn(cosB) + c2 Qn(cosB)

n=201,...

m#n, mneN

+n(n+l)y = 0, n =

(x=cos0 and Exercise!)
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Derivation of (4)(i)

—
D
—
C

—~

X,t) =1-2xt +t°

(x—t)U 2=U> nP, (x)t"*

(x—t)ni;;Pn (X)t" =(1—2xt+t2)§npn (x)t"

— Coefficients of t"
XP, (x)- P (X)=(n+1)P,,(x)—2nxP, (x)+(n-1)P_, (x)

(n+1)P

n+1

(x)=(2n+1)xP, (x)—nP,_, (x)



Selecting the last coefficient in a Legendre polynomial

n+1 ;

Let an be the coefficient of xI' in Pn(X), i.e., its last Coefficient, and an+1 be the coefficient of X 1n Pn+1(x ,1.e., its last coefficient

(n+1) Pn+1 - (2n+1) X Pn +n Pn-l =0

The coefficient of x1*1 in LHS (a polynomial of degree n+1) of the above equation is given by

(2n+1)
(n+1) an+1 - (2n+1) an=0 an+l = " 31 @n
_ 2n-1 _ 2n-1 2n-3 B
an = ", an-1 T T 71 @n2 =
_@r-(@-3--EE0
n!
(2n)!
20(n!)2

But a( is the coefficient of xV in Po(x) = 1,wehaveap = 1

_ (2n-1)(2n-3)...(5)(3)(1)
n!

an
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Bessel's Equations

Gamma Function, I'(a) --- Appendix

Definition:
Ta) = Je't™dt
0
Properties:
(i) [No+l) = oal'(a)
Tt+l) = fe't'dt = [—e‘tt“]0 +afe'tTdt =al(a)
0 0
['(a+n)
i (o) = , neN

oa(a+l)...(a+n-1)

(i) TI'(1) = 1 (from definition!) TI'(2) =1, I'G) = 21,...

o
2
I

(n—-1)!, n e positive integer N

(i) T@/2) = \Fc (Exercise! Hint: let /2=y, dt=2u du) ;
reé/2 = —F5—

(iv) TI'(n) = towo neN

V) Plots of I'(x):

Series - 46



Vi)

Series - 47



Series - 48

Gamma function

Fig. 517.
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Auxiliary Material App. 3

erfx
1

0.5

Fig. 518. Error function

Error function (Fig. 518 and Table A4 in Appendix 5)

2
(35) erfx=ﬁfoe" di
2 x3 x5 x?

(36) erfx—\/q_rx—ll3+2!5—3!?+_...

erf (%) = 1, complementary error function
_ _ 2 (% e
(37 erfcx—l—erfx—\/q_TJ‘xe dt
Fresnel integrals' (Fig. 519)
x x

(38) Cx) = L;cos (%) dt, S(x) = fo sin (#2) dt

C(») = V /8, S(*) = V«/8, complementary functions

&
1
(o2 i, e

Series - 49



5.1

Bessel's Differential Equation
xzy" +xy'+ (xz—vz)y =0

where v > 0. Note that in this differential equation, p(x) = x/x” = 1/x is not analytic at x = 0, thus we have to assume

0]
y = 2 amx™"
m=0

= Indicial Equation:
(r+v)(r-v) =0

or rm=v and 1m=-v

Series - 50



(i) Solution forri =v

thus,a1 = a3 = a5 = =0
q ao
an a = -
2 (v+1)

WU a2vH4) T i (v+1)(v+2)

(-1)™ ao
O2m = " oy ;m=12 ...
2"m!l(v+1)(v+2)...(v+m)

- (_1)m X2m

= Y+ ax
y1(x) ao X ao X mz=:1 zzmm!(v+1)(\’+2)--'(\’+m)

Series - 51



We let

R S
W (v
v @ (_1)mx2m
= i) = hx) = x X

2m+Y
0 2

e m!T(v+m+1)

Bessel Function of the First Kind of Order v

For v=n2>0, n:integer

0 -1 m _2m
D
m=0

"M m!l(n+m)!

Note that
Jo(O) =1
J10) = J2(0) = ... = 0
Jo(@) = Ji(o) = ... =0

Series - 52
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Fig. 103. Bessel functions of the first kind
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Tables

Tables of Laplace transforms in Secs. 5.8 and 5.9

Tables of Fourier transforms in Sec. 10.11

Table A1

Bessel Functions

For more extensive tables see Ref. [1] in Appendix 1.

x Jylx) Jylx) x Jolx) Jylx) x Jolx) Jilx)
0.0 10000 0.0000 3.0 —0.2601 0.3391 6.0 0.1506 —0.2767
0.1 0.9975 0.0499 31 —0.2921 0.3000 6.1 0.1773 —0.2559
02 0.9900 0.0995 32 —=0.3202 0.2613 0.2 0.2017 —0.2329
03 0.9776 0.1483 33 —0.3443 0.2207 0.3 0.2238 —0.2081
04 0.9604 0.1960 34 —0.3643 0.1792 6.4 0.2433 —0.1816
0.5 0.9385 0.2423 35 —0.3801 0.1374 6.5 0.2601 —0.1538
0.6 0.9120 0.2867 3.6 —0.3918 0.0955 0.6 0.2740 =0.1250
0.7 0.8812 0.3290 37 —0.3992 0.0538 6.7 0.2851 —0.0953
0.8 0.8463 (.3688 38 —0.4026 0.0128 6.8 0.2931 —0.0652
09 0.8075 0.4059 39 —0.4018 —0.0272 6.9 0.2981 —0.0349
1.0 0.7652 0.4401 4.0 —0.3971 —0.0660 7.0 0.3001 —0.0047
1.1 0.7196 0.4709 4.1 —0.3887 —0.1033 71 0.2991 0.0252
1.2 0.6711 0.4983 4.2 —0.3766 —0.1386 12 0.2951 0.0543
1.3 0.6201 0.5220 43 —0.3610 =0.1719 1.3 0.2882 0.0826
1.4 0.5669 0.5419 4.4 0.3423 0.2028 T4 0.2786 0.1096
15 05118 0.5579 4.5 —0.3205 —=0.2311 1.5 0.2663 0.1352
1.6 0.4554 0.5699 4.6 —0.2961 —0.2566 1.6 0.2516 0.1592
1.7 0.3980 0.5778 4.7 —0.2693 -0.2791 17 0.2346 0.1813
1.8 0.3400 0.5815 4.8 —0.2404 —(.2985 78 0.2154 0.2014
1.9 0.2818 0.5812 4.9 =0.2007 —=0.3147 19 0.1944 0.2192
2.0 0.2239 0.5767 5.0 —0.1776 —0.3276 8.0 01717 0.2346
2.1 0.1666 (.5683 5.1 —0.1443 —0.3371 8.1 0.1475 0.2476
22 01104 0.5560 52 =0.1103 —{.3432 8.2 0.1222 0.2580
23 0.0555 0.5399 53 —0.0758 —0.3460 8.3 0.0960 0.2657
24 0.0025 0.5202 54 —0.0412 —0.3453 B4 0.0692 0.2708
25 —0.0484 0.4971 55 —0.0068 —.3414 8.5 0.0419 0.2731
2.6 =0.0968 0.4708 5.6 0.0270 —0.3343 8.6 0.0146 0.2728
2.7 —0.1424 0.4416 5.7 0.0599 —0.3241 8.7 —0.0125 0.2697
28 —(0.1850 0.4007 58 0.0917 —0.3110 8.8 —0.0392 0.2641
29 —0.2243 0.3754 59 0.1220 —0.2951 8.9 —0.0653 0.2559

Jolx) = 0 for x = 2.405, 5.520, 8.654, 11.792, 14.931, -

Jyx) = 0 for x = 0, 3.832, 7.016, 10.173, 13.324, -
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(ii) Solution forrz=-v
integer
r—r2 = 2v

non-integer

Recall that

y2 = kyl(x)1nx+xr2(Ao+A1x+A2X2+...)
k=1 if r-rn =20

k may be zeroif r1 —r2# 0, butr1 — 12 € I

Also that we have illustrated

(@ Xy'+xy+[-(1/2]y =0

Series - 56



1 1
rn = 5, = -5 ,rn-n = 1, but

sin x 1

y1 = —\/— , Y2 = —\/— (apcos x +arsinx),
X X

In this case, k = 0.

xzy"+xy‘+(x2—1)y =0

ri=1 mn=-1 r1-rn=2, and

1 1

yi = x2 amx' ;y2 = 7 yilnx-—> xT+ L

In this example, k #0.

Series - 57



o]

In general, substitute r; = v into y1 = Z am X", we have

m=0
y1= Jv(x)
Similarly, substitution of 2 =-v intoys = Z am X" gives
m=0
y2 = J(x)

Are J,(x) and J.,(x) linearly independent?

Casel v¢ N
Juv(x) and J.,(x) are linearly independent. In this case, the general solution of the Bessel differential equation is

y = alux)+ce]y(x), veN

Series - 58



Case2 veN {0,1,2, ..}

It can be shown that (Exercise! Also read p. 230, theorem 2 of the textbook.)

Jn() = (1)"Ja(x)

i.e., J.n and Jn are linearly dependent, we need to find the second linearly independent solution by assuming (or by
method of reduction of order)

y2 = k(nx)y1 + xr2(Ao+A1X+A2X2+...), x>0

Series - 59



It yields (try this as an exercise!)

1 ™ (n-m-1 !(>2<)2m'n

y2 = Jn()Inx—7 >

m=0

1 ~1)"[ hm + hmn 2m+n
Ly (1) Thm+ ] (L)

where hn, = 1+

N[

Series - 60



It is customary to replace y2 by the linear combination of solutions

2
Yn(x) = o {y2x) + (y-In2) Ju(x)}, n = 0,1,2,..

wherey = lim (hn—Inn) = 05772156649 = Euler Constant.

n—oo
Y1 is called the Bessel function of the second kind of order n or the Neumann's function of order n.
Thus, the general solution for v =n € N is
() = cTa() + e Ya(x)

Plots of Yo and Y1 vs. x can be found in Fig. 105, p. 231 of the textbook. Note that for all integer n, Yn(0) = —c and
Yn(e) = 0.

The function Yn can be extended to all real numbers v > 0 by letting

Yo(x) = sirlwn [Jv(X) cosvi—].(x)], v=#0,1,2-0
Yn(x) = lim Y,(x)

In general, the general solution of Bessel's equation of order v (regardless whether v is integer or not) can be written as

y(x) = alux)+c2Y(x)

Series - 61



[Example] Xy xy +(xX*=1/4)y = 0

[Solution] y = a ]1/2(x) +C2 Y1/2(x)

or y c1 ]1/2(x) +a]  (x)

-1/2

(You have to specify what J1/2, Y1/2, J-1/2 are in your answer.)

[Example] Xy +xy +(x*=1)y = 0
[Solution] y = c1Ji(x) +c2 Yi(x)
but not y = c1Ji(x) + c2 Ja(x)

since J1(x) and J.1(x) are linearly dependent!
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Fig. 103. Bessel functions of the first kind
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0.5

Fig. 105. Bessel functions of the second kind.
(For a small table, see Appendix 5.)
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ABb6

Tables

App.

Table A1 (continued)

x Folx) Fi(x) x ¥olx) ¥i(x) x Folx) ¥i(x)
0.0 (—x) (—=) X5 0.498 0.146 50 —0.309 0.148
0.5 —0.445 —=1.471 3.0 0.377 0.325 55 —0.339 —0.024
1.0 0.088 —0.781 35 0.189 0.410 6.0 —0.288 =0.175
1.5 0.382 0.412 4.0 0.017 0,398 6.5 0.173 0.274
20 0.510 0.107 45 0.195 0.301 70 0.026 0.303

Table A2

Gamma Function [see (24) in Appendix A3.1]

@ i) « I'{e) @ L) @ I'a) [t I'(ex)
1.00 1.000 000 1.20 | 0918 169 1.40 0.8RT 264 1.60 0.893 515 1RO | 0.931 384
1.02 0988 844 1.22 0.913 106 1.42 (.886 356 1.62 | 0D.895924 1.82 (.936 845
1.04 0.978 438 1.24 | 0.908 521 1.44 0.885 805 .64 0.598 642 1.84 | 0942612
1.06 | 0.968 744 || 1.26 | 0904397 || 1.46 | 0885604 || 1.66 | 0.901 668 || 1.86 | 0.948 687
1.08 | 0959725 || 1.28 | 0900718 || 1.48 | 0.885747 || 1.68 | 0.905001 || 1.88 | 0.955071
1.10 | 0951351 || 1.30 | 0.897471 || 1.50 | 0.886227 || 1.70 | 0.908 639 || 1.90 | 0.961 766
1.12 0.943 590 1.32 0.894 640 1.52 0.887 039 1.72 | 0.912 581 1.92 0.968 774
1.14 | 0936416 || 1.34 | 0.802216 || 1.54 | 0.888 178 || 1.74 | 0.916 826 || 1.94 | 0.976 099
1.16 | 0929803 || 1.36 | 0.800185 || 1.56 | 0.889639 || 1.76 | 0921375 || 1.96 | 0.983 743
1.18 | 0923728 || 1.38 | 0.888537 || 1.58 | 0.891420 || 1.78 | 0.926227 || 1.98 | 0.991 708
1.20 | 0918 169 1.40 | 0887 264 1.60 | 0893515 1.80 | 0931384 || 2.00 1.000 000

Table A3
Factorial Function
n n! log (n!) n n! log (n!) n n! log (n!)

1 1 0,000 000 6 720 2.857 332 1 39916 800 T7.601 156
! 2 0.301 030 7 5040 3.702 431 12 479 001 600 H.680 337
3 [ 0.778 151 B 40 320 4.605 521 13 6 227 020 800 9,794 280
4 24 1.380 211 9 362 830 5.559 763 14 7 178 291 200 10.940 408
5 120 2.079 181 10 3628 800 6.559 763 15 1 307 674 368 000 12.116 500

Table A4
Error Function, Sine and Cosine Integrals [sce (35), (40), (42) in Appendix A3.1]

x erf x Si(x) cilx) X erf x Sitx) ci(x)
0.0 0.0000 0.0000 x 20 0.9953 1.6054 0.4230
0.2 0.2227 0.1996 1.0422 2.2 0.9981 1.6876 —0.3751
0.4 0.4284 0.3965 0.3788 24 0.9993 1.7525 —0.3173
0.6 0.6039 0.5881 0.0223 2.6 0.999% 1.8004 —0.2533
0.8 0.7421 0.7721 —0.1983 2.8 0.9999 1.8321 —(.1865
1.0 0.8427 0.9461 —0.3374 30 1.0000 1.8487 —0.1196
1.2 0.9103 1.1080 =0.4205 32 1.0000 1.8514 —0.0553
1.4 0.9523 1.2562 —0.4620 34 1.0000 1.8419 0.0045
1.6 0.9763 1.3892 04717 36 1.0000 1.8219 0.0530
1.8 0.9891 1.5058 —0.4568 38 1.0000 1.7934 0.1038
20 0.9953 1.6054 —0.4230 4.0 1.0000 1.7582 0.1410
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5.2 Bessel’s Equations of Order v with Parameter A

Lett = A x

=

or

Xy Hxy + (A -V)y = 0

dy/dx = A dy/dt, dy/dx* = A*d%/dt

2i21 dy 2 2 _
tdtz tt g F(t-v)y =0

y = cJu(t) + 2 Y(t)

y = cau(rx) +c2 Y (Ax)

If v is not a positive integer or 0, then the solution can be also written as

y = cJv(Ax) +c2](Ax)

Series - 68



5.3

Modified Bessel's Functions

(Problems 14 ~ 16 on p. 232 in the Textbook)

Xy +xy = (X Hv)y = 0

Note that the solution of x* y'+xy'+( A -V y

0 is given by

Series - 69



y = a Ju(Ax) + c2 Yy(Ax)
In this case, A =1, R 1, thus the solution of (1) is

y = a Ju(ix) + c2 Y,(ix)

. > (D)™ (@x) "
But M) = Y
m=0 2 m!I(v+rm+1)
0 V+2m
=i y
mzjo 27" mIT(v+m+1)
Cowe let

L(x) = i’ Ju(ix) = Modified Bessel's Function of the First Kind of Order v

If v is not an integer, the general solution of

Xy Hxy = (CHv)y = 0
is given by

y = aly(x)+cl(x)

Series - 70



If v =n, an integer, then

We now define

o LK-LK)
Kv(x) = 2 sinvm
= Modified Bessel's Function of the second kind with order v
. L,(x) = L, (x
Forv = n, Ky(x) = lim v
v—n

In summary, the general solution of
Xy +xy' = (X +n)y = 0
is y = c1ln(x) + c2 Ka(x)

and that

Series - 71



the general solution of

xzy"+xy'—(x2+v2)y =0 ,vel

is given by
y = aly(x) +c2Lu(x)

or y = ali(x) + 2 Ki(x)

Note that  In(®) = o Ka(w) = 0
L0 =1 Ka(0) =
L(O) = 0

54 Equations Solvable in Terms of Bessel Functions

Series - 72



If (1-a)*>4cand if neither d, p nor q is zero, then (except the Euler Equation),
Xy +x(a+2bxP )y +[c+dxT+b(a+tr-1)x"+b*xP]y = 0
has the complete solution

y = el T [ a1 Jv(xT) + c2 Yo (AxY) ]

where
1-a b
a = 2 , B = ?
- NIEY AJ(1-a)y-4c
q oV 2q

Note a=r and g=s in the other course notes.

If d <0, J,and Y, are to be replaced by I, and K,, respectively.
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(ii)

If (1-r)*>4b,a=0and if eitherr-2<s or b =0, then (except for Euler Equation)
(Xy' ) +(ax’+bx?)y = 0
has a complete solution

y = X [ayx) + e Yy(xX) ]

where
: 1-r 3 2—-r+s
© = 2 ’ Vo= 2
L oo2flal_ Afa-ry-4b
T 2—-r+s '’ v o= 2—-r+s

If a<0,]vand Y, are to be replaced by I, and K,, respectively.
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(iii) Xy’ +axy +(bx‘+d)y = 0
= y = ax ]V(XXB) + X YVO\,XB)
where
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[Example] Xy +axy +(bx‘+d)y = 0

o

[Solution] Let y = ux

, a-1 , o
y = aux +u'x
y’ = a(oc—l)uxa—2+ocu’xa-1+ e x T+ u K"
= u"xa+20cxa-1u' + OL(OL—l)U.Xa_Z
Thus, the differential equation becomes
xz(u"xa+2axa—1u'+0L(0L—1)uxa—2)
+ ax(ocuxa-1+u'xa)+(bxc+d)uxq =0
or x> u" + (2a+a)xu'+{bx"+a(a-1)+aa+d}u = 0

Compare the above equation with the standard form of the Bessel's differential equation

xzy"+xy'+(k2x2—v2)y =0

we set 2a+ta =1

2 2
= xu"+xu+{bx"+d-a"}u = 0
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Next, we set

. _ du _dudz _duc 3
then W = 4 T dzdx Cdz2 X

2 < c
du ¢ 3-1 du c [c } 7-2
5—1 X

-2

N[0

] B g5,

*dz 2|27

After substitution u' and u" into the differential equation, we have

, d%u du {4b ) 4(—d+oc2)}
u

2 Z — 2
C C

Again, compare with the standard Bessel's differential equation, we can set

oo _4b L 4(edod)
2 ; v 2

and the solution is thus

u c1]y(Az) + 2 Yi(Az)

but y

ux ,z = X = X
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~<
I
(@)
Aty
X
Q
—
<
—
>
X
=
~
+
@)
N
X
Q
=<
A~
>
X
=
~

where o= "5 (a =1-2a)
- =
P ="
4b
2= = (M*B> = b)

[Exercise]  Try to use the substitutions

1/

y = ux 1/2

and z = x
to find the solutions (in terms of Bessel's functions) to the following differential equation
xy'+y =0
[Answer] y = a \/; Ja( 2\/; ) + \/; Ya( 2\/>_< )
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5.5 Some Important Properties of Bessel Functions

(A) Identities

drx J, v
q AL ey

drx"J, o
@ AL ey

1)y MJ{:K& = x Yy1(x)

d[x" Yu(x)] v
(2)y dx = —x Yy+(x)
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Jva() - Jwn(x) = 2] (%)

)] f X Jva(x) dx = X Ju(x) + C
6 [ X Js()dx = —x Ju(x)+C
(7) f Jwr(x) dx = f Jva(x) dx =2 Ju(x)
[Example]  Express Js(Ax) in terms of Jo(Ax) and J1(Ax)
[Solution] Itis known that
2v
‘Jv—l (ﬂ,X) + ‘Jv+l (ﬂX) - E Jv (ﬂ,X)
2v
3,1 (Ax)= ™ J, (Ax)=J,. (4x)
6
= Jax) = o Ja(Ax) — J2(Ax)
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B0%) = S J20) - 1)

J2(Ax) = % J1(Ax) — Jo(Ax)

2
S = { i e 1] e

[Exercise]  Show that

J xJox)dx = xJix)+C

™ x"J, (x)] =—x"J,.,(x)

Series - 82



[Example] Evaluate f Ja(x) dx

[Solution] f Jas(x)dx = f x> [ x2Ja(x) ] dx

Integration by parts:
S dx = = (X7 269) + [ % Ja(x) dx®
= LX)+ [ 2x" p(x)dx  v=1
= —Jo(x)-2x" Ji(x) + C

[Example] JM;—XL dx
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J J2(3x) dx

1( 3]0 1
=3{— - X)+I3X3<3x)211<3x)3dx}
. %{-J—thx +3f 3xJ1(3x)%}
y y

u dv

u = 3xJ1(3x) ; dv = dx/x°
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%[xﬂ]v(x)]:xv\]vl(x)

du = 3xJo(3x) 3 dx; v = - 1/x

2
X

jM dx
= %{_lex?)_xL+3|:-3]1(3x) +9f]o(3x) dx”

%i—XL ~J1(3x) + 3 J Jo(3x) dx

In general, an integral of the form

J XM Jn(x) dx m+n > 0
1. completely integrated if m + n = odd,
2. have f Jo(x) dx for m + n =even.
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(B) Behavior Near the Origin

n =20 Jo(0) = Io(0) =
Yo(0) = -0
Ko(0) = o

n = 1,2, .. Ja0) I,(0) =
Yn(0) = -
Kn(0) =

(C) Asymptotic Behavior for Large x

Jn(x) = . cos( X —
2 .
Yn(x) = T sm(

L

(D) Bessel Function of Half Integer Order

T,

1 /2(X) - X
_ 2
1 /z(x) h X

sin x

cosh x

(Read p. 224 of the Textbook.)
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(E) Bessel Function of Negative Order, n e N
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Summary

flm)(x
f(x) = Z -~ : (x—=xo0)™ Taylor Series
m=0
When xo = 0 = Maclaurin Series
Ratio Test
_ ame1 (X —x0 )™
p = lim m
m—>» | am (X—Xo)

Analytic Function, Regular Point, Singular Point, etc.

y'+tpx)y'tqx)y = 0

If p(x), q(x) are analytic at x =0 = x = 0is a regular point

o0
= vy= Z am X"
m=0

If p(x), q(x) are not analyticat x =0 = singular point

For x = 0 is a singular point, rewrite the differential equation in the following form:

v, )
YTyt y =0

If b(x), c(x) analytic at x =0 = regular singular point
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0
= y=xrz am X"

m=0
If b(x), c(x) not analytic = irregular singular point
Frobenius Method - Extended Power Series Method

Any differential equation of the form

X

where b(x) and c(x) are analytic at x = 0, has at least one solution of the form

o0
2
y = xrz amx" = X (ap+ax +axx"+ ...), ap =0

m=0
where r may be any number ( real or complex ).

Form of the Second Solution

Case1: 11 and r2 differ but not by an integer
_ I 2
y1 = X (actaix+axx +...)

y2 = sz(A0+A1X+A2X2+...)
1
Case2: mi=n=r1r 1r="5 (1-bo)

yi = X' (ao+tarx+axx +...)
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y2 = yilnx + X" (Aix+ A’ +...)

Case 3: 11 and r2 differ by a nonzero integer, wherer; > 12

V1 xrl(ao+a1x+azx2+...)

y2 = kyilnx+ x*(Ao+Arx +Axx>+...)
where r1 —r2 > 0 and k may be zero.

Note that in Case 2 and Case 3, the second linearly independent solution y2 can also be obtained by reduction of order
method (i.e., by assuming y2=uy1).
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Legendre's Differential Equation
(1-x2)y" -2xy' +n(n+1)y =0, n=012,...
y = cPa(x) + c2Qn(x)

where Pn(x) = Legendre polynomials
Qn(x) = Legendre functions of the second kind

2 2 2

Xy"+ xy' '+ (x°-v)y =0
(1) veN (v =n)

— ) + 2 Yal)
C1 ]n(X) + ]—n(X) <~ No!

<<
Il

y = c1Ju(x) + c2Y(x)

or = a1 Jv(x) + c2]J4(x)

~<
|

Need to specify Jand Y . . .
xzy" + xy' + (szz-vz)y =0

(1) veN (v =n)

y = c1Ja(Ax) + c2 Yn(rx)
y = & Ja(Ax) + 2 Jn(Ax) < No!
2) vegN
y = alx) + c2Y,(Ax)
or y =caltx) + c2](Ax)
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Need to specify Jand Y . . .

Xy xy - (V) y = 0

(1) veN (v =n)

= c1In(x) + c2 Kn(x)
c1In(x) + c2Ln(x)

<<

y = cal(x) + c2K(x)
or y = cal(x) + c2Lu(x)

Need to specify Iand K. . .

Jo, J1, Yo, Y1, Io, I, Ko, K1 7 [E] £
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